Use this page to access the datasets that are presented via this tool, including metadata and academic papers about these datasets.
Type | Resolution | Source + academic reference |
---|---|---|
Demographics and Health | Borough/census tract(s), census-designated place (CDP), incorporated place | Derived from the 2020 U.S. Census Demographics and Housing Characteristics File (DHC), the 2018-2022 U.S. Census American Community Survey (ACS) 5-year dataset, the 2024 CDC PLACES dataset, and the 2017-2021 CDC Social Determinants of Health (SDOH) dataset. Citations:
|
Elevation | 30 m | Derived from the ASTER GDEM 30–meter digital elevation product. Point data are averaged across a 1km square. Area data are averaged across the entire area. NASA/METI/AIST/Japan Spacesystems and U.S./Japan ASTER Science Team (2019). ASTER Global Digital Elevation Model V003 [Data set]. NASA EOSDIS Land Processes Distributed Active Archive Center. Accessed 2023-09-08 from https://doi.org/10.5067/ASTER/ASTGTM.003 |
Hydrology | 12 km | Alaska VIC Hydrologic Model Output (1950-2099): Decadal Averages of Monthly Summaries 21st Century Hydrologic Projections for Alaska and Hawai‘i, Mizukami, N., Newman, A. J., Wood, A. W., Gutmann, E. D., and Hamman, J. J. (2022). Boulder, CO: UCAR/NCAR/RAL. https://doi.org/10.5065/c3kn-2y77 Mizukami, N., Newman, A. J., Littell, J. S., Giambelluca, T. W., Wood, A. W., Gutmann, E. D., Hamman, J. J., Gergel, D. R., Nijsenn, B., Clark, M. P., and Arnold, J. R. (2022). New projections of 21st century climate and hydrology for Alaska and Hawaiʻi. Climate Services, 27, 100312. https://doi.org/10.1016/j.cliser.2022.100312 |
Indicators (temperature & precipitation) | 12 km | Historical and projected climate indicators for Alaska at 12km Indicators were derived from this data product: Mizukami, N., Newman, A. J., Wood, A. W., Gutmann, E. D., and Hamman, J. J. (2022). Boulder, CO: UCAR/NCAR/RAL. https://doi.org/10.5065/c3kn-2y77 |
Precipitation (monthly and derived) | 2 km | Historical - 2km CRU TS 4.0 Walsh J.E., Bhatt U.S., Littell J. S., Leonawicz M., Lindgren M., Kurkowski T. A., Bieniek P. A., Gray S., & Rupp T. S. (2018). Downscaling of climate model output for Alaskan stakeholders, Environmental Modelling & Software, 110, 38–51. DOI 10.1016/j.envsoft.2018.03.021 |
Permafrost | 1 km | GIPL Model 2.0, from the Geophysical Institute Permafrost Laboratory at the University of Alaska Fairbanks Marchenko, S., Romanovsky, V., & Tipenko, G. (2008). Numerical modeling of spatial permafrost dynamics in Alaska. Ninth International Conference on Permafrost, Online Proceedings, Volume 2, 1125–1130. Accessed 2023-09-08 from https://www.permafrost.org/event/icop9/ |
Spruce Beetle Risk | 12 km | Historical and projected climatic protection of spruce beetle infestation in Alaska Fresco, N., Littell, J., Redilla, K., Moan, J., & Brannoch, S. (in prep). Modeling the loss of climate protection from spruce beetles (Dendroctonus rufipennis) under changing conditions in Alaska’s forests. [submission anticipated November 2023] Underlying climataloglical data provided by: Mizukami, N., Newman, A. J., Wood, A. W., Gutmann, E. D., and Hamman, J. J. (2022). Boulder, CO: UCAR/NCAR/RAL. https://doi.org/10.5065/c3kn-2y77 |
Temperature (monthly and derived) | 2 km | Historical - 2km CRU TS 4.0 Walsh J.E., Bhatt U.S., Littell J. S., Leonawicz M., Lindgren M., Kurkowski T. A., Bieniek P. A., Gray S., & Rupp T. S. (2018). Downscaling of climate model output for Alaskan stakeholders, Environmental Modelling & Software, 110, 38–51. DOI 10.1016/j.envsoft.2018.03.021 |
Wildfire (flammability) | 1 km | ALFRESCO Model Outputs - Relative Flammability Johnstone, J. F., Rupp, T. S., Olson, M. & Verbyla, D. (2011). Modeling impacts of fire severity on successional trajectories and future fire behavior in Alaskan boreal forests. Landscape Ecology, 26, 487–500. https://doi.org/10.1007/s10980-011-9574-6 |
Wildfire (vegetation type mode and percentage) | 1 km | ALFRESCO Model Outputs - Vegetation Type Johnstone, J. F., Rupp, T. S., Olson, M. & Verbyla, D. (2011). Modeling impacts of fire severity on successional trajectories and future fire behavior in Alaskan boreal forests. Landscape Ecology, 26, 487–500. https://doi.org/10.1007/s10980-011-9574-6 |
All the data used in this web tool may be accessed directly via an API. Documentation, examples, and links to source datasets are provided on the API site.